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ABSTRACT: Orbicellid corals are threatened primary reef-building corals throughout the Carib-
bean in shallow and mesophotic coral ecosystems (MCEs), yet a poor understanding of where they
occur limits population monitoring and management. The goals of this study were to predict suit-
able habitat for orbicellid coral species and to identify how abiotic environmental factors constrain
that habitat on the eastern Puerto Rico Shelf. The probability of occurrence for Orbicella annularis
and O. faveolata/O. franksi (combined) from shallow to mesophotic depths on the eastern Puerto
Rico Shelf was predicted using maximum entropy models. Contributions of abiotic predictors,
including bathymetry, seafloor topography, temperature, wave exposure, and bottom velocity,
were assessed. Model performance was assessed using area under the receiver operating charac-
teristic curve, standard error of the replicate model runs, and mean absolute error. Both O. annu-
laris and O. faveolata/O. franksi distributions were best predicted by rugosity, temperature, and
wave exposure. O. faveolata/O. franksi occurred at shallow and mesophotic depths, and acted as
a proxy for identifying the spatial extent of MCEs, contrary to O. annularis, which was predicted
at shallow depths. Results for O. faveolata/O. franksi in mesophotic depths indicated potential for
large areas of unexplored and unmonitored MCEs along the southeast shelf of St. Thomas, US Vir-
gin Islands and within the Virgin Passage. These spatial predictions of potential mesophotic reef
habitats will provide direction for future MCE exploration efforts.

KEY WORDS: Orbicella spp. - Species distribution modeling - Maximum entropy - Mesophotic
coral ecosystems - Threatened species

1. INTRODUCTION

Caribbean coral reef-building is dominated by 2
genera, Acropora and Orbicella. These reef-building
corals face multiple threats, including coastal devel-
opment, land-based pollution, and climate change
(Pandolfi et al. 2003). The branching acroporid corals
have seen extreme population loss since the 1970s
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(Aronson & Precht 2001), leaving 3 massive orbicellid
species (O. annularis, O. faveolata, and O. franksi) as
the foundational species. However, orbicellid popu-
lations have also declined throughout the Caribbean
(Jackson et al. 2014, Edmunds 2015), and their recent
precipitous decline has led to all 3 species being clas-
sified as ‘threatened’ under the United States Endan-
gered Species Act (79 FR 53852, 10 September 2014).
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Orbicellids are primary reef-building corals (Go-
reau & Wells 1967, Reed 1985, Weil & Knowlton
1994) in shallow and mesophotic coral ecosystems
(MCEs), which are found globally between 30 and
150 m depths. O. annularis primarily occupies shal-
low reef habitat (Pandolfi & Budd 2008) in depths
less than 20 m (Weil & Knowlton 1994), whereas
O. faveolata and O. franksi are common in depths
up to 60 m throughout the Caribbean (Armstrong
et al. 2006, Menza et al. 2008, Smith et al. 2008,
2010). In the United States Virgin Islands (USVI),
mesophotic orbicellid banks are the dominant
overall coral reef type, with cover and density sur-
passing shallow coral reef development (Smith et
al. 2019). High cover orbicellid mesophotic reefs are
primarily found along the southern insular shelf of
the northern USVI (St. Thomas and St. John; Smith
et al. 2010; see Fig. 1) and extend along the south-
ern shelf of Puerto Rico. Mesophotic depths also
extend out along the northern shelf area of St.
Thomas, but these areas have sparse orbicellid
and total coral cover (Groves 2016). Orbicellids are
strongly structured by wave exposure and tend to
form reefs in sheltered locations (Done 1983, Chol-
lett & Mumby 2012). Due to their depth, meso-
photic reefs are protected from strong wave action
and provide this ideal sheltered habitat (Lesser et
al. 2009), although Smith et al. (2016a) suggest
that upper MCEs are also structured by storms.
Other abiotic characteristics are associated with the
structure of hardbottom mesophotic habitats in-
cluding seafloor complexity as measured by metrics
like rugosity and slope (Sheppard 1982, Sherman
et al. 2010), temperature (Lesser et al. 2018), and
light (Kahng et al. 2019, Tamir et al. 2019). How-
ever, it is unknown if these characteristics are cor-
related with other factors that contribute to coral
development.

Given the importance of Orbicella spp. in the
Caribbean, mapping their distribution in shallow
and mesophotic depths is critical to guide effective
management of dwindling populations. Characteri-
zation of MCEs is limited due to the logistical con-
straints of diver-based and remote observations at
mesophotic depths (Hinderstein et al. 2010). In some
areas of the Caribbean, there have been recent
improvements in classifying well-developed meso-
photic shelf areas (e.g. the insular shelf of the
northern USVI; Costa et al. 2017), but the resulting
maps were not designed to show the distribution of
specific coral species, such as orbicellids.

Species distribution modeling (SDM) is a quanti-
tative approach to predict the potential habitat of

an organism across a landscape or seascape based
on the abiotic variables that shape its distribution
(Guisan & Zimmermann 2000, Franklin & Miller
2009). SDMs have been utilized to predict the dis-
tributions of threatened and endangered species
(Godown & Peterson 2000, Engler et al. 2004), and
can be used for monitoring declining populations,
implementing restoration plans, managing and con-
serving critical habitat, or identifying unknown
populations (Guisan et al. 2013). They have been
applied to deep and shallow coral reef habitats
(see Bridge et al. 2012, Chollett & Mumby 2012,
Franklin et al. 2013, Georgian et al. 2014, Costa et
al. 2015, Silva & MacDonald 2017). SDMs are also
used to explore how abiotic factors influence spe-
cies' distributions through variable contribution
(i.e. how much does the abiotic variable contribute
to the predicted distributions), and SDMs can be
used to explore how variable contribution changes
with different model spatial scales (resolution and
extent) (Van Horn 2002).

Here we present a predictive species distribution
modeling effort for orbicellid corals on the eastern
Puerto Rico Shelf from shallow to mesophotic depths.
The study objectives were to (1) develop SDMs for
the threatened coral species O. annularis and O.
faveolata/O. franksi (combined) using coral presence
records and abiotic variables associated with orbi-
cellid distributions to identify mesophotic coral habi-
tat, (2) assess whether abiotic variable contributions
vary within shallow and mesophotic depths or by
geographic region (northeast and southeast shores),
and (3) provide spatial predictive maps to help guide
characterizations of potential mesophotic reef habi-
tat for future field validation.

2. MATERIALS AND METHODS
2.1. Study area

St. Thomas and St. John, USVI, are located on
the eastern Puerto Rico Shelf at the interface of
the northeastern Caribbean Sea and tropical west-
ern Atlantic. The shelf area also consists of the
main island of Puerto Rico, Culebra, Vieques, and
the British Virgin Islands. The shelf area encom-
passing the northern USVI (up to 65 m depth) is
1572 km? (Kadison et al. 2017). The study area in-
cluded shallow to mesophotic depths (extending to
60 m) surrounding the islands of St. Thomas and
St. John, USVI, and Culebra and Vieques, Puerto
Rico (Fig. 1).
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2.2. Study species

Orbicella spp. occurrence data were compiled from
multiple shallow and mesophotic reef survey efforts
conducted from 2007 to 2017. These datasets in-
cluded (1) spatially stratified random drop camera
and diver surveys characterizing the mesophotic
depths of the north and south shores of St. Thomas
(Smith et al. 2010, 2016a, Groves 2016; depth >30 m);
(2) permanent transects from the USVI Territorial
Coral Reef Monitoring Program (Smith et al. 2015;
5-40 m); (3) the National Oceanic and Atmospheric
Administration (NOAA) National Coral Reef Moni-
toring Program (NCRMP; NCCOS 2016, NCCOS &
SEFSC 2018; 1-33 m) based on a stratified random
design framework targeting hardbottom habitat; and
(4) benthic habitat mapping for the southeast shelf of
St. Thomas and St. John by the NOAA National Cen-
ters for Coastal Ocean Science (Costa et al. 2017;
30-100 m). These datasets used to extract Orbicella
spp. occurrence data are heterogeneous in nature,
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and there are discrepancies in the area or spatial
scale covered for each survey. For example, NCRMP
sampling uses a 50 m grid to target survey locations,
and only sample once per grid cell. However, 15 m
transects are conducted per grid cell. The other sur-
veys mentioned here employ similar methods and
cover smaller areas within each 50 m grid cell so the
presences used in the model reflect where Orbicella
spp. are generally abundant. See Text S1 in the
Supplement at www.int-res.com/articles/suppl/m667
p061_supp.pdf for a description of the survey design
for each dataset.

Occurrences of O. annularis, O. faveolata, and O.
franksi were extracted from all surveys. O. faveolata
and O. franksi occurrences were combined (i.e. 1 or
both species present at a survey location) because
they are difficult to distinguish at deeper depths (Herz-
lieb et al. 2006), occupy the same niche, and may hy-
bridize (Szmant et al. 1997). Species occurrences out-
side the spatial extent of the predictor datasets were
not included, and each cell (at a 50 m resolution)
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Fig. 1. Study site on the eastern Puerto Rico Shelf encompassing St. Thomas and St. John (US Virgin Islands) and Culebra and

Vieques (Puerto Rico). The extent of the model is represented in the grey outline, with shallow and mesophotic depths shown.

The presence of Orbicella annularis (OA), O. faveolata/O. franksi (OFF), both Orbicella spp., and absences are displayed in

addition to the number of presences and calculated prevalence for each coral group. Some areas of the study area have

straight edges due to the size of some of the grids of the predictors. In particular, the regional ocean modeling system (ROMS)

grid (bottom velocity), was square shaped and encompassed a large part of the area. The bathymetry layer was then clipped
to the ROMS layer
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within the predictive framework was limited to a sin-
gle occurrence (i.e. duplicate occurrences in each
grid cell were removed) to reduce potential sampling
biases for the model. For each coral group, prevalence
was also calculated (number of presences / total num-
ber of presence and absence points combined) (see
Figs. 1 & 2) to be used as a parameter in the models
based on modeling methods conducted by Costa et
al. (2015). Using prevalence as a parameter in the
models is further explained in Section 2.5.1. We tested
the spatial autocorrelation of the presence points and
found that they were spatially autocorrelated, which
can bias model results (Dormann et al. 2007). How-
ever, after thinning the presence points, we found
that we had an insufficient number of presence points
to create accurate models. We discuss the limitations
of spatially autocorrelated data in Section 4.2. Data
compilation and cleaning were conducted in R soft-
ware v. 3.3.3 (R Core Team 2017). Spatial autocorrela-
tion analyses were conducted using the 'Spatial Ana-
lyst' toolbox in ArcGIS v. 10.5.1.

2.3. Abiotic variables

Abiotic variables tested during model development
included bathymetry (depth), seafloor complexity, sea
surface temperature (SST), benthic orbital velocity,
wave height, wave period, wave direction, and bottom
velocity (Table 1). The extent of the study area was
limited to 60 m depth to account for known depth limi-
tations of Orbicella spp. (Smith et al. 2010). The extent
of the study area was also limited by the available
coverage of high-resolution bathymetry data and the
extent of the bottom velocity data. All abiotic variables
were resampled to a 50 m resolution. We modeled at a
50 m resolution to account for variability in GPS data
and to match the resolution of the sampling grid used
for the NOAA NCMRP data collection.

For the study area, bathymetry was mosaicked from
multibeam sonar and light detection and ranging
(LiDAR) data collected from 2008 to 2016 by NOAA
(retrieved from https://www.ncei.noaa.gov/). The na-
tive spatial resolution of the bathymetry data ranged
from 2 to 10 m, but we developed bathymetric vari-
ables at a resolution of 50 m. Seafloor complexity vari-
ables derived from bathymetry included aspect, stan-
dard deviation of the depth, rugosity, slope, change in
slope, total curvature, planform curvature, and profile
curvature at a 50 m resolution. Rugosity was calcu-
lated as the ratio of the surface area to the planar area
across the neighborhood of a central pixel, derived
from the compiled bathymetry data. Using this method,

flat areas are equal to 1, with more rugose areas >1
(Jenness 2004, Wilson et al. 2007); this is closer to a
measurement of relief rather than the rugosity pro-
duced by individual coral colonies. Bathymetric deri-
vations were conducted using the ‘Spatial Analyst’
toolbox in ArcGIS v. 10.5.1, and the rugosity was de-
rived using DEM Surface Tools (Jenness 2004, 2013).

We used the National Aeronautics and Space Ad-
ministration Multi-Scale Ultra-High Resolution Sea
Surface Temperature data (NASA MUR; https://podaac.
jpl.nasa.gov/MEaSUREs-MUR). Daily daytime SSTs
were provided at 1 km resolution for 2011-2017. Av-
erage, maximum, minimum, range, and summer aver-
age (June-September) temperatures were first calcu-
lated from the native 1 km resolution SST grids across
the temporal range of the data. The resulting grids
were then resampled to 50 m resolution using bilinear
interpolation and clipped to the model extent.

Wave height, wave period, and wave direction
were acquired from the Caribbean Coastal Ocean Ob-
serving System (CariCOOS; https://www.caricoos.
org/data-download) using the CariCOOS Nearshore
Wave Model (Anselmi-Molina et al. 2012, Canals et
al. 2012) and a Simulating Waves Nearshore spectral
wave model (Booij et al. 1999) made twice daily from
2013 to 2016 at a 200 m native resolution. The aver-
age and maximum wave height and period (along
with average wave direction) were calculated from
the 200 m native resolution grids, and then resam-
pled to a 50 m resolution using bilinear interpolation.
The average and maximum benthic orbital velocities
were also calculated across all grids (using the equa-
tion of Wiberg & Sherwood 2008). Bottom velocity
was acquired from Regional Ocean Modeling System
(ROMS) simulations based on in situ current meas-
urements throughout the water column (see Cheru-
bin et al. 2011). It was included to represent currents
at depth driven by oceanographic variables other
than surface waves. The ROMS model had a tempo-
ral range from 2007 to 2008 and native resolution of
330 m, and was resampled to a 50 m resolution using
bilinear interpretation.

2.4. Model extents

Within our model domain, there is variability in en-
vironmental conditions between regions and depths
(Fig. 1). Environmental conditions differ between the
northeast and southeast shores of this area (Groves
2016, Groves et al. 2018) as well as between shallow
and mesophotic depths (Smith et al. 2016a). To iden-
tify how orbicellid distributions are influenced by
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Table 1. Descriptions of abiotic variables (environmental predictors) that were used to develop the MaxEnt models for Orbicella annularis
and O. faveolata/O. franksi. SST: sea surface temperature; CariCOOS: Caribbean Coastal Ocean Observing System. Wave direction units
are in radians, but for ease of interpretation, are displayed as degrees throughout the paper. NA: temporal and/or native resolution are
not applicable to the predictor

Predictor Unit Temporal Native Definition
resolution resolution
Depth (mean) m NA 2-10m Water depth (to seafloor)
(resampled
to 50 m)
Depth (SD) m NA NA Dispersion of water depth around the mean calculated
using the ArcGIS ‘Focal Statistics’ tool by deriving the
compiled bathymetry data at 50 m
Aspect ° NA NA Compass direction of maximum slope calculated
the ArcGIS 'Aspect’ tool by deriving the compiled using
bathymetry data at 50 m
Curvature 1/100 cm; NA NA Measure of convexity/concavity of the landscape
concave (-); calculated using the ArcGIS ‘Curvature’ tool by deriving
convex (+) the compiled bathymetry data at 50 m
Planform 1/100 cm; NA NA Curvature of the surface perpendicular to the maximum
curvature concave (-); slope direction calculated using the ArcGIS ‘Curvature’ tool
convex (+) by deriving the compiled bathymetry data at 50 m
Profile curvature 1/100 cm; NA NA Curvature of the surface parallel to the maximum slope
concave (-); direction calculated using the ArcGIS 'Curvature' tool
convex (+) by deriving the compiled bathymetry data at 50 m
Rugosity Unitless NA NA Ratio of surface area to planar area calculated using
DEM Surface Tools (Jenness 2013) by deriving the compiled
bathymetry data 50 m
Slope ° NA NA Angle of the seafloor calculated using the ArcGIS 'Slope’ tool
by deriving the compiled bathymetry data at 50 m
Change in slope  Degrees of NA NA Maximum rate of change in slope calculated using the
degrees ArcGIS 'Slope’ tool be deriving the slope data at 50 m
SST (mean) °C 2011- 2017 0.01°% (1.11 km;  Average temperature of the sea surface during the day
resampled
to 50 m)
SST (minimum) °C 2011- 2017 0.01°% (1.11 km;  Minimum temperature over 2011-2017 of the sea surface
resampled during the day
to 50 m)
SST (maximum) °C 2011- 2017 0.01°% (1.11 km;  Maximum temperature over 2011-2017 of the sea surface
resamples during the day
to 50 m)
SST (summer mean) °C 2011- 2017 0.01°% (1.11 km;  Summer (June-September) mean temperature over
resampled 2011-2017 of the sea surface during the day
to 50 m)
SST (range) °C 2011-2017 0.01°% (1.11 km;  Minimum temperature subtracted from the maximum of the
resampled sea surface during the day
to 50 m)
Wave height (mean) m 2013-2016 200 m Average of the difference between the elevations of a wave
(resampled crest and a neighboring trough
to 50 m)

(Table continued on next page)
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Table 1. Continued

Abiotic variable Unit Temporal Native Definition
resolution resolution
Wave height m 2013-2016 200 m Maximum difference between the elevations of a wave crest
(maximum) (resampled and a neighboring trough
to 50 m)
Wave period (mean) S 2013-2016 200 m Average time it takes the wave cycle to be completed
(resampled
to 50 m)
Wave period S 2013-2016 200 m Maximum time it takes the wave cycle to be completed over
(maximum) (resampled
to 50 m)
Wave direction Radians 2013-2016 200 m Direction in which the wave is moving over
(resampled
to 50 m)
Orbital velocity ms! 2013-2016 200 m Average orbital motion within the water column due
(mean) (resampled to surface-generated waves to a depth equal to half the
to 50 m) wavelength of the wave (Wiberg & Sherwood 2008)
Orbital velocity ms™! 2013-2016 200 m Maximum orbital motion within the water column due
(maximum) (resampled to surface-generated waves to a depth equal to half the
to 50 m) wavelength of the wave a circle (Wiberg & Sherwood 2008)
Bottom velocity ms! Derived from in 330 m Resultant vector of the modeled vertical and horizontal
situ measurements (resampled currents at depth (Cherubin et al. 2011)
made in 2007 and 2008  to 50 m)

variations in the environmental variables at different
spatial scales, we compared model predictions for 4
different geographic extents: (1) the primary 0-60 m
model, which encompasses shallow and mesophotic
depths along the northeast and southeast shores of
the Puerto Rico Shelf (referred to as ‘0-60 m model’)
(see Figs. 1 & 2); (2) south shore only (referred to as
‘0-60 m south shore model'); (3) shallow areas only
(0-30 m depth limit; referred to as ‘shallow only
model'); and (4) mesophotic areas only (30-60 m
depth limit: referred to as ‘mesophotic only model’)
(Fig. 2). We removed the north shore of our study area
because mesophotic coral development is sparse in
this region (Groves 2016), and we hypothesized that
the spatial predictions for Orbicella spp. and con-
tributing environmental variables driving those pre-
dictions would change with the removal of this area.
Additionally, the southeast shore of the study region
contains highly developed and dense mesophotic
reefs (Smith et al. 2010, 2016b). We wanted to ensure
that we were producing model results for the south-
east shore region that were as accurate as possible
and would not be biased by lack of mesophotic reef
development along the northeast shore. Similarly, we
modeled at shallow depths and at mesophotic depths

separately so those models would not be biased by in-
cluding the full depth range. O. annularis was not in-
cluded in the mesophotic only model due to a low
number of presences in the area. All abiotic variables
were clipped to these 4 extents for modeling input,
and all Orbicella spp. occurrence data that fell outside
these extents were not included in the models.

2.5. Predicting orbicellid distributions

Maximum entropy modeling (MaxEnt v. 3.4.0; Phil-
lips et al. 2017) was used to create spatially explicit
predictions of O. annularis and O. faveolata/O. frank-
si distributions. MaxEnt is a presence/background
sample SDM (sometimes referred to as presence-
only) that predicts habitat suitability based on corre-
lation between species presences and environmental
conditions and extends this correlation to other areas
with similar conditions (Phillips et al. 2006, 2017).
Maximum entropy modeling is a common method for
estimating species distributions from presence data
when absence records are unavailable or unreliable
(Elith et al. 2011, Merow et al. 2013), and is com-
monly implemented using the Java software MaxEnt
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Fig. 2. Extents of the 4 different models: (A) shallow and mesophotic depths (0-60 m), (B) mesophotic only (30—-60 m), (C) shallow

and mesophotic (0—60 m), but with the north shore mesophotic areas removed, and (D) shallow only (0-30 m). Also displayed are

the 30, 60, and 90 m depth contours. Number of presences and prevalence for each coral group based on the model extent are
listed. Orbicella annularis was not modeled for the mesophotic only model due to the lack of presences at those depths

(Phillips et al. 2006, 2017). MaxEnt uses a statistical
machine learning algorithm to estimate the distribu-
tion (geographic range constrained by the extent of
the environmental predictors) of a species by finding
the distribution which has maximum entropy (Phil-
lips et al. 2006, 2017). The MaxEnt formulation is
used to maximize the likelihood of a parametric ex-
ponential distribution (Phillips et al. 2004), and is
mathematically equivalent to a Poisson point process
model (Renner & Warton 2013). We chose to use
MaxEnt because it is a common modeling technique
for predicting the distribution of deep-water corals
(Georgian et al. 2014, Kinlan et al. 2020) and meso-
photic corals (Costa et al. 2015, Silva & MacDonald
2017). We also chose to use MaxEnt due to the abun-
dance of presences for Orbicella spp. at mesophotic
depths along the south shore, making it difficult to
use other modeling methods. Because we were look-

ing for areas of undiscovered mesophotic reef in this
section of the Caribbean using Orbicella spp. as a
proxy, we determined that MaxEnt models would be
the best in identifying unsampled areas with the
highest likelihood of finding orbicellids.

2.5.1. Model development

We developed our modeling methods by following
the advice outlined by Merow et al. (2013) and the
mesophotic modeling methods of Costa et al. (2015).
Model development, performance, and evaluation
were based on 10 replicate MaxEnt models for each
coral group (O. annularis and O. faveolata/O. franksi).
The parameters that were set in the MaxEnt models
were as follows: random seed = on, replicated run
type = subsample, replicates = 10, maximum iterations
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= 500, and number of background samples = 10 000.
The random seed refers to the randomly chosen start-
ing point used to subset the data for model training
and cross validation. The regularization value (or beta
multiplier) is a MaxEnt parameter used in machine
learning to reduce overfitting of the model. The regu-
larization value was determined using the ‘Maxent-
VariableSelection' package in R v. 3.3.3 (Jueterbock
et al. 2016), which runs preliminary MaxEnt models
and tests a series of beta multipliers. The beta multi-
pliers tested in the preliminary model runs included
B=1,2,3,5 7 11, and 13, and were tested for each of
the 4 comparative models. The regularization value
that yielded a minimum small-scale adjusted Akaike's
information criterion (AICc) (Burnham & Anderson
2002) for each model can be found in Table S1 in the
Supplement. We also ran preliminary models testing
a different number of background samples (5000,
10000, and 20 000), and found that 10 000 background
samples yielded the smallest AICc.

Of the 22 predictors, 8 created the best models for
both coral groups. Images of the 8 predictors can be
found in Fig. S1 in the Supplement. We used a pair-
wise correlation analysis to reduce the number of pre-
dictors. We removed highly correlated predictors, and
ran a series of preliminary MaxEnt models testing dif-
ferent combinations of predictors that created the best
model based on the AICc and the area under the re-
ceiver operating characteristic (ROC) curve (i.e. area
under the curve; AUC). We also chose predictors that
were most ecologically relevant in driving Orbicella
spp. distributions. The default prevalence calculated
for each coral group based on the presence and ab-
sence data was 0.086 for O. annularis and 0.432 for
O. faveolata/O. franksi for the 0—60 m model; how-
ever, the prevalence differed with changes in the spa-
tial extent of the models (see Fig. 2 for the other
prevalence calculations), and was included as a para-
meter in the MaxEnt models. An inherent issue with
presence/background modeling (e.g. MaxEnt) is that
prevalence cannot be calculated from presence-only
datasets. The prevalence parameter in MaxEnt mod-
els is arbitrarily set to 0.5 by default (Elith et al. 2011).
Prevalence in this case is a measure of the sampling
effort. It can be used for a more accurate interpretation
of the logistic transformed spatial predicted outputs,
and allows for a direct comparison between the coral
groups that are modeled. The prevalence parameter
used in these models is only estimated within the
study area and does not represent prevalence
throughout the entire distribution of a species (Elith et
al. 2011). With a priori organism prevalence data,
MaxEnt can be applied to specifically predict the

probability of species occurrence rather than the
habitat suitability (e.g. Elith et al. 2011, Costa et al.
2015). Data were randomly partitioned so that 70 % of
records were used for training and calibrating the
model, and 30 % were used to test model performance.
For each replicate model run, different portions of the
data were randomly subset for training and testing.

The resulting spatial predictive maps from MaxEnt
depicted the complementary log-log (cloglog) trans-
formed output, which represents the probability of
occurrence on a scale of 0 to 100%, where 100 %
demonstrates that there is a 100 % probability of the
species occurring within that specified grid cell. The
cloglog transformation gives a more appropriate esti-
mate of the probability of species occurrence com-
pared to the previous default output of MaxEnt, the
logistic transformation (Phillips et al. 2017). The max-
imum training sensitivity plus specificity threshold
(max SSS) calculated from the MaxEnt models was
applied to the resulting continuous spatial predic-
tions to create binary spatial predictive maps, which
were used to identify the area the species is likely to
occupy (Liu et al. 2013, 2016).

2.5.2. Model performance

The discrimination capacities (the ability of the
model to correctly distinguish between presences
and background samples) of all models were as-
sessed using ROC curves, which compare the sensi-
tivity (true positive prediction rate) to 1 — the speci-
ficity (false positive prediction rate) over the range of
predicted values. The AUC is the measure of the
model's performance. AUC of 0.5 is indicative of the
null model, meaning the model is no better at dis-
criminating between presences and background
points than random chance. Models with an AUC
greater than 0.9 indicate superior model perform-
ance (Hosmer et al. 2013). ROC curves with test and
training AUC values were generated by MaxEnt for
each of the 10 model replicates and averaged.

Model performance was also assessed using reli-
ability, the agreement between predicted and ob-
served values (Liu et al. 2009). Reliability was repre-
sented by mean absolute error (MAE), a measure-
ment of the average magnitude of the predictive

errors. MAE is defined as:
é i~ X
MAE = —21=1|y | (1)
n

where n is the total number of species presences
and true absences, y; is the predicted probability of
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occurrence per grid cell (ranging in values from 0
to 1), and x; is the observed species occurrence (0
or 1) based on a method used by Costa et al.
(2015). The absence data were thinned similarly to
the presence data, where 1 absence was recorded
per grid cell to account for sampling biases. If a
presence and an absence fell within the same grid
cell, that cell was counted as a presence. The
occurrences used to calculate MAE were the test
presence points (30% of the data) set aside by
MaxEnt for each of the 10-replicate model runs.
The true absence data available for the full model-
ing region were used (not the background points
generated by MaxEnt). The resulting MAE values
were averaged across the 10-replicate model runs.
A high MAE value is indicative of disagreement
between the observed and predicted values. MAE
was also calculated individually for both presence
and absence values to identify which records were
causing the disagreement. MAE calculations were
conducted using R software v. 3.3.3 (R Core Team
2017).

2.5.3. Model uncertainty

Model uncertainty was quantified to provide some
indication of how sampling variability and model
structure may have influenced the predicted distri-
butions (Barry & Elith 2006, Lobo et al. 2008, Elith &
Leathwick 2009). Uncertainty maps for the model
replicates of each coral group were created by taking
the standard error among the 10 replicate cloglog
spatial distribution maps, and were assessed visually
for areas of high uncertainty.

2.5.4. Contribution of predictor variables and
response curves

Contributions of predictor variables to species dis-
tribution predictions were measured using the per-
cent contribution of each predictor as calculated by
MaxEnt. When the MaxEnt model is trained, it re-
cords which environmental variables make the great-
est contributions to the model's predictions and con-
verts these into a percentage. Percent contribution of
variables was assessed across the 4 different model
extents to identify how the abiotic variable contribu-
tion changed with depth or geographic region. Res-
ponse curves were used to assess how probability of
occurrence predictions changed in the context of the
environmental variables.

3. RESULTS
3.1. Spatial predictions of occurrence

According to the average test AUC values, both the
Orbicella annularis (mean + SE: 0.955 + 0.002) and O.
faveolata/O. franksi (0.873 + 0.002) models exceeded
the random model prediction (AUC > 0.5). O. annu-
laris had a higher probability of occurrence in shal-
low depths (<15 m) in the full depth range model
(0-60 m; Fig. 3A), whereas O. faveolata/O. franksi
occurred more widely in both shallow and meso-
photic depths (Fig. 4A). O. faveolata/O. franksi had
the highest probability of occurrence in the Virgin
Passage, which is an area of reef habitat between the
islands of St. Thomas, USVI, and Culebra, Puerto
Rico. The max SSS threshold identified more poten-
tial habitat area on the southeast shelf compared to
the northeast shelf (Fig. 4B). Based on the max SSS
threshold area calculations, O. annularis was likely
present in 474 km? (13.6% of the 3497 km? total
survey area), and O. faveolata/O. franksi was likely
present in 604 km? (17.3% of the total survey area)
(Table 2). Modeling results for the other model ex-
tents can be found in 'Model extent analyses' and
Table S2, both in the Supplement.

3.2. Spatial prediction uncertainty and error

The MAE results and uncertainty maps demon-
strated greater discrepancies between test presences/
true absences and predicted probabilities for O. faveo-
lata/O. franksi. Model uncertainty was high based on
visual assessments of the model uncertainty maps
(Figs. 3C & 4C), indicating high variability between
the model runs. Based on visual assessments, the high-
est uncertainties for each coral group were co-located
with the highest probability of occurrence values: in
the Virgin Passage and along portions of the southern
insular shelf for O. faveolata/O. franksi (Fig. 3C), and
in shallow areas for O. annularis (Fig. 4C).

The total MAE indicated disagreement between
observed and predicted values for O. faveolata/O.
franksi, but there was more agreement for O. annu-
laris. The MAE + SE was 14.97 + 0.54 and 36.24 =
0.55% for O. annularis and O. faveolata/O. franksi,
respectively. For O. faveolata/O. franksi, both true
absences and test presences disagreed with ob-
served predictions when the MAE was calculated
separately. This indicated that the models overpre-
dicted in areas where known absences occurred, and
underpredicted in areas where test presences were
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Probability of occurrence

o 100%

-

A Orbicella annularis
Spatial predictions

0 Likely present
I Likely absent

B Max ssS threshold

— 31.6 %
- o,

C Uncertainty (standard error)

Fig. 3. (A) Spatial predictions for Orbicella annularis encompassing shallow and mesophotic depths for the northeast and south-

east shores. Warm-colored areas show high probability of occurrence, while cold-colored areas show low probability of occur-

rence. (B) Binary map created when applying the maximum training sensitivity plus specificity (max SSS) threshold to the

continuous spatial predictions, showing areas of likely presence of O. annularis and areas of likely absence. (C) Uncertainty
(standard error) associated with the probability of occurrence spatial prediction maps
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A Orbicella faveolata/franksi Probability of occurrence

Spatial predictions _ wo 100%

| Likely present
B Likely absent

Fig. 4. As in Fig. 3, but for Orbicella faveolata/O. franksi
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Table 2. Threshold calculations. The area represents each coral group likely
being present based on the maximum training sensitivity plus specificity thresh-
old (max SSS). The percent of the total area where each coral group is likely
present was also calculated (present area / total area x 100). OA: Orbicella
annularis; OFF: O. faveolata/O. franksi. O. annularis was not modeled for the
mesophotic only model due to the lack of presences at those depths

variables, with rugosity, depth, and
SST range remaining the top 3 predic-
tors for the 0-60 m, south shore and
shallow only models (Fig. 5). The ru-
gosity response curves for O. annularis
indicated that probability of occur-

Model type Total area OA OFF rence increased with increasing rugos-

(km?) Area (km?) % Area (km?) % ity (Fig. 7). The probability of occur-

rence tapered off when a rugosity

0-60 m 3496.66 474.45 13.57 604.34 17.28 value of 1 was surpassed. Rudosity val-
0-60 m south shore  2285.80 218.71 9.57 60021  26.26 > SUrpassed. Rugosity ve

Shallow only 1498.89 249.07  16.62 24198  16.14 ues >1 are indicative of high-relief

Mesophotic only 2004.75 - - 451.03 22.50 habitat, with 1 representing flatter ar-

located. The absence MAE for O. annularis sug-
gested disagreement, also signifying either overpre-
diction of O. annularis or incorrect absence records
(Table 3). MAE results for the other model extents
can be found in 'Model extent analyses’ and
Table S3, both in the Supplement

3.3. Predictor importance and contribution

O. annularis and O. faveolata/O. franksi models
had similarities in regards to predictor contribution,
with some notable differences. For the full model ex-
tent, rugosity was the strongest predictor for both O.
annularis (53.21 %; Fig. 5) and O. faveolata/O. franksi
(65.17%; Fig. 6). Depth (32.96%) and SST range
(6.01 %) both followed rugosity as important contrib-
utors to O. annularis predictions. Orbital velocity
(14.24 %) and average SST (8.70 %) followed rugosity
as contributing variables for O. faveolata/O. franksi.

3.3.1. Orbicella annularis

Varying spatial extents of abiotic predictors along
the eastern Puerto Rico Shelf did not affect pre-
dictions of O. annularis. The comparative models
showed little change in percent contribution of all

Table 3. Number of occurrences and the mean absolute error (MAE)
calculations for Orbicella annularis and O. faveolata/O. franksi

eas. The variation in rugosity no longer
mattered in predicting probability of
occurrence after this ‘threshold’ was reached. In ad-
dition, the probability of O. annularis occurrence de-
creased with increasing depth and decreased with
variability in SST range (Fig. 7).

3.3.2. Orbicella faveolata/O. franksi

In contrast to O. annularis, the variables that
best predicted occurrence of O. faveolata/O. franksi
changed with the extent of the model. The meso-
photic only model for O. faveolata/O. franksi was
markedly different from the other models. For the 3
models that included shallow water extents (0—60 m
full, 0-60 m south shore, and shallow only), rugosity
was by far the most important variable. In the
mesophotic model (30-60 m), wave direction became
the most important variable, followed by rugosity
and average SST (Fig. 6). The contribution of the sec-
ond and third most important variables in the models
that included shallow water were minor relative to
rugosity, but varied slightly between models. Rugo-
sity, wave direction, average SST were the most
important predictors in the 0—60 m full model. Rugos-
ity, orbital velocity, and average SST were the 3 pre-
dictors contributing most to the probability of occur-
rence in the 0-60 m south shore model. Lastly,
rugosity, orbital velocity, and SST range were the top
3 contributing variables in the shallow only model.

As with O. annularis, the response
curves indicated an increase in rugosity
above a value of 1, which was associated

MAE t o lari ot Jata/franksi with increased probability of occurrence
ype — 0. annuliaris . 1aveolala/lrankKsi . .
N MAE + SE (%) N MAE + SE (%) for O. faveolata/O. franksi (Fig. 7). The re-
sponse curves for wave direction showed
Absences 2076 13.57 + 0.54 1297 38.69 £ 0.77 a strong shift from low probability at 45°
Test presences 178 31.31 £2.42 938 32.84 £ 0.79 to a peak in probability between 80 and
Absences and 2254 14.97 £ 0.54 2235 36.24 £ 0.56 110° for O. faveolata/O. franksi. Average
test presences ’ ) T ’ ) g
SST showed a consistent high probability
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Fig. 5. Percent contribution of each variable for Orbicella annularis across the comparative model extents (0—60 m model,
0-60 m south shore only model, and the shallow only model [S]). Graphs are generally listed in order of which variables
contributed most to the predictions. SST: sea surface temperature

at the lower SST range, but dropped off markedly
above 27.7°C. The orbital velocity response curve
showed that high probability of occurrence peaked
with very low orbital velocity, approaching 0.

4. DISCUSSION

The resulting spatial predictions indicated that
unmonitored and unmanaged areas of Orbicella spp.
are widespread in both shallow and mesophotic coral
reef habitat along the eastern Puerto Rico Shelf. In
particular, there is the potential for large areas of
previously unidentified O. faveolata/O. franksi reef
habitat at mesophotic depths. However, some of the
model performance measures indicated areas of un-
certainty and disagreement between spatial predic-
tions and true occurrences. The abiotic variables that
shaped these predicted distributions included rugos-
ity, depth, wave exposure, and temperature.

4.1. Abiotic contributions to Orbicella spp.
distributions

4.1.1. Rugosity

Rugosity was the strongest predictor for O. annu-
laris and O. faveolata/O. franksi across several mod-
els, with increasing relief (rugosity >1) indicating an
increased probability of occurrence. The response
curves indicated that corals were excluded from flat
areas. These flat areas are indicative of soft sub-
strate, sediment, or depositional environments, and
are not ideal habitat for coral settlement and growth.
Corals could also be responding to high relief sub-
strate in regards to settlement and subsequent sur-
vival. High relief substrate is a driver of coral distri-
butions in Hawaii because antecedent reef structure
(i.e. not created by recent reef building) creates ideal
substrate (Jokiel et al. 2004), and similarly, ante-
cedent reef buttresses also create ideal habitat for
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Orbicella faveolata/franksi
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Fig. 6. As in Fig. 5, but for Orbicella faveolata/O. franksi (but includes the mesophotic only model [M]). Note differences in the
y-axes for the variables, as they do not contribute equally to models

MCE development along a portion of the Puerto Rico
Shelf (Sherman et al. 2010). In seafloor mapping
studies, high rugosity values were indicative of hard
coral occurrences in a shallow reef area of Puerto
Rico (Prada et al. 2008) and in shallow and meso-
photic coral reefs in Bonaire (Trembanis et al. 2017).
Shallow coral occurrence was also predicted by both
slope and rugosity in Hawaii (Franklin et al. 2013).
Spatial resolution is a key consideration for sea-
floor topography inclusion in SDMs (Pittman et al.
2009, Lecours et al. 2015). In our study, the rugosity
measurement used in the models is more similar to a
measurement of relief, and not a measurement of
individual coral colonies that create the rugosity.
Corals create rugosity (Alvarez-Filip et al. 2009, Gra-
ham & Nash 2013), and Orbicella spp. are primary
reef-building corals in shallow and mesophotic reef
habitats (Weil & Knowlton 1994, Newman et al.
2015). Orbicella spp. distributions were modeled at a
50 m resolution (i.e. much greater than the sizes of
individual coral colonies), and the spatial scale sug-

gests other types of rugose substrate, such as
antecedent reef, are creating this ideal habitat. The
resolution of the rugosity layer was derived from the
50 m bathymetric grid. The importance of rugosity in
these models reflects the overall macro-structure and
general topography of the reef, which could suggest
that the antecedent reef structure is driving the
model results. Shallow and mesophotic reefs are
built upon drowned reefs submerged from sea level
rise during the Pleistocene epoch (Lesser et al. 2018),
and this antecedent reef could be providing the ideal
topographic complexity and high relief habitat for
Orbicella spp., similar to conditions in Hawaii (Jokiel
et al. 2004) and Puerto Rico (Sherman et al. 2010).
Rugosity could also be acting as a proxy for the
angle of available substrate, or slope, as they are pos-
itively correlated (dependent on spatial scale) (Pitt-
man et al. 2009). Higher relief or more complex habi-
tat is indicative of more angled surfaces. Although
slope was tested in preliminary SDMs, it was not
included in final model runs because the inclusion of
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Fig. 7. Response curves for the 8 predictors that composed the best models for Orbicella annularis (OA) and O. faveolata/O.

franksi (OFF) for the 0—60 m full model. The response curves for the single-variable model represent a MaxEnt model created

using only that variable. The response curves show how each environmental variable affected the probability of occurrence
when interacting with the other variables. SST: sea surface temperature

rugosity in the models produced higher AUC values.
Seafloor slope affects sedimentation, which also
structures MCEs (Sherman et al. 2016). High-relief
areas favor the downslope transportation of sediment
away from corals, improving coral development
(Sherman et al. 2010). Slope and rugosity are also
important for coral recruitment (Lesser et al. 2018).
We suggest that rugosity is a strong predictor be-
cause it is a positive feedback loop for coral reef
growth, i.e. rugosity encourages coral recruitment,
which creates more rugosity. In shallow reef habitat,
coral recruits prefer downward-facing substrate, and
in deep areas, upper horizontal surfaces are pre-
ferred (Harborne et al. 2006). In studies using settle-
ment tiles to observe coral recruitment, recruits also
prefer rugose texture and refuges (Edmunds et al.
2014), although our models did not pick up on such
fine-scale rugose features. The preference for more
complex habitat reflects the preference of a coral for
low light levels, low sedimentation rates, and protec-

tion from competition and predation (van Woesik et
al. 2014). Areas without relief or topographic com-
plexity can limit coral recruitment due to lack of shel-
ter, excessive algal growth, and the presence of
sediment (Edwards & Clark 1999). Rugose surfaces
also lead to ‘sticky water,' an oceanographic process
where areas of high reef density are poorly flushed
because the prevailing currents are directed away
from these regions, leading to high levels of natal
recruitment at well-developed reefs (Andutta et al.
2012).

4.1.2. Wave direction

Wave direction was a strong predictor of O. faveo-
lata/O. franksiin the shallow and mesophotic models
that included the north shelf habitats. This likely rep-
resents the strong spatial structuring of mean wave
climate between the north and south shelves of the
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northern USVI. The north shelf is exposed to the
Atlantic swell and sees a dominant wave climate
from the northeast (45°), whereas the south shelf is
sheltered from the Atlantic swell and has a wave cli-
mate dominated by regional trade winds from the
east (90°). These dominant wave directions corre-
spond to the low and high probability occurrence
predictions in the models for O. faveolata/O. franksi.
The wave direction importance in the models dimin-
ishes when the north is removed; thus, in the north-
inclusive model, the wave climates are likely sep-
arating the low occurrence mesophotic orbicellid
areas of the north with the high occurrence meso-
photic orbicellid areas of the south (Fig. 1; Smith et
al. 2019). This does not mean that wave climate is
contributing to the distribution of orbicellids in the
north and south, as there might be other ecological
reasons that orbicellids are rare in the north that are
not accounted for in the modeling. Growth rates of O.
franksi are similar at the same depths on the north
and south shores around St. Thomas, suggesting re-
cruitment or disturbance as a limiting factor for north-
ern mesophotic populations (Groves et al. 2018).
Wave climate and high swell events may cause
chronic sediment resuspension or low-frequency
mechanical disturbance that causes a low abundance
of orbicellids on the mesophotic north shelf (Groves
2016). If shown, then wave direction could indicate a
swell regime associated with disturbance and/or
stress in mesophotic orbicellids of the northeastern
Caribbean.

Wave direction could also be a proxy for food avail-
ability. Species-specific changes from autotrophy to
heterotrophy occur from shallow to mesophotic
depths (Lesser et al. 2018). Montastraea cavernosa
becomes more heterotrophic at mesophotic depths,
relying more on zooplankton and inorganic nutrients
(Lesser et al. 2010). Potential food sources are trans-
ported onto the reef through upwelling or other
sources. There is evidence from the Indo-Pacific to
suggest that deep upwelling and wave direction
drive food availability, which further drives coral
trophic zonation (Williams et al. 2018, Radice et al.
2019).

4.1.3. Temperature

SST was also a contributing abiotic variable across
all model extents. Generally, the response curves
showed a pattern of decreased probability of occur-
rence with increasing temperatures or more variable
temperature ranges. These environmental variable

preferences are in close agreement with the findings
of Castillo & Helmuth (2005), who reported that O.
annularis did not respond well physiologically to
acute changes in temperature, and tended to prefer
cooler waters in shallower areas. The SST range pre-
dictor did not capture acute changes in temperature,
because it was averaged across several years; how-
ever, the model results provided insight into the
habitat preferences for O. annularis based on low
variability in temperature fluctuations. Changes in
temperature over long periods of time have also con-
tributed to the decline of O. annularis cover in Flo-
rida and the Caribbean (St. John, USVI, Edmunds &
Elahi 2007; Florida Keys, Ruzicka et al. 2013), provid-
ing further evidence that O. annularis requires a cer-
tain ideal temperature range to thrive. Temperature
plays a key role in differentiating between shallow
and mesophotic reef habitats as well, and is a limit-
ing factor in determining the lower depth limits of
MCEs (Bongaerts et al. 2015). MCEs are cooler than
shallow reefs (Lesser et al. 2009, Smith et al. 2016b,
Lesser et al. 2018) most likely from internal oceano-
graphic processes (Bak et al. 2005). Smith et al.
(2016b) identified that benthic temperatures in Orbi-
cella spp. mesophotic sites were cooler than shallow
coral reefs in the USVI specifically, which could
explain the difference in temperature contributions
for the shallow and mesophotic only models. Orbi-
cella spp. at mesophotic depths are more sensitive to
elevated temperatures, and have likely acclimated to
temperatures at these depths, thus making cooler
temperatures ideal for Orbicella spp. (Smith et al.
2016b). We used SST data from 2011-2017 to closely
match the data collected for presences of Orbicella
spp., which is common in the coral modeling litera-
ture (see Georgian et al. 2014, Costa et al. 2015,
Chen et al. 2020). These current Orbicella spp. pres-
ences may be driven by current temperature condi-
tions, but increases in temperature due to climate
change are already causing, and will continue to
cause, negative impacts to coral populations.
Benthic temperature data were not used in the
MaxEnt models because they were not available for
the entire model extent. Winship et al. (2020) recom-
mended using in situ temperature data to create an
interpolated temperature grid at depth for deep coral
SDMs. While some in situ temperature data were
available for the study region, there were not enough
data to accurately create a bottom temperature grid.
The use of SST could be a proxy for benthic temper-
atures instead. Costa et al. (2015) identified that SST
in Hawaii was a proxy for benthic temperature at
mesophotic depths, and similar results were seen in
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other parts of the Pacific (Kahng et al. 2012). In the
Caribbean, comparisons between satellite-measured
temperature and in situ temperature measurements
have only been documented within the first 20 m of
water (Castillo & Lima 2010, Neal et al. 2014, Gomez
et al. 2020). For the purposes of this study, correla-
tions with benthic and satellite-measured tempera-
tures would potentially make SST an ideal predictor
to use in modeling species distributions at shallower
depths. It is unknown if this would work similarly at
mesophotic depths in the Caribbean and is some-
thing to consider for future study.

4.2. Model error and uncertainty

The distributions of both coral groups are potentially
inaccurate in some areas, given the high MAE values.
The MAE values were high when calculated sepa-
rately for the presences and absences (rather than
combined) for O. faveolata/O. franksi. High MAE for
presences is indicative of underpredictions from the
model, whereas high MAE for absences is indicative
of overprediction. The high MAE exhibited may be
due to missing or inaccurate environmental predictors
such as backscatter and light-attenuation grids (Kahng
et al. 2019, Tamir et al. 2019). Environmental data are
sparse for marine environments compared to terres-
trial environments (Robinson et al. 2011). Most data-
sets are available for the surface and subsurface lev-
els, and rarely for deeper depths (Lecours et al. 2015).
Several predictors used in these SDMs were surface
values at coarse resolutions (1 km), and may not be in-
dicative of coral distributions at mesophotic depths.
Several of the predictors were also resampled from
coarser (1 km) to finer resolutions (50 m), further in-
troducing error.

High-resolution multibeam or LiDAR provides
bathymetry and rugosity data that are key habitat
descriptors to include in marine SDMs (Valavanis et
al. 2008, Pittman et al. 2009). Acoustic backscatter
data differentiate between hard- and softbottom
habitats (Anderson et al. 2008), but were not avail-
able for the entirety of the region. However, combin-
ing backscatter data from different multibeam
datasets could prove problematic due to the subjec-
tive way backscatter is processed. It is important to
differentiate between hard- and softbottom, but not
all hardbottom habitat is ideal for coral settlement
and growth. The upper mesophotic zone along the
southern insular shelf contains a variety of hard-
bottom habitat including horizontal banks, steep
slopes, and walls. Orbicella spp. occur on horizontal

banks, whereas Agaricia spp. are common on steep
slopes and walls. The upper mesophotic zone also
supports large areas of softbottom habitat, which is
largely composed of rhodolith beds. These beds con-
tain small stony coral patches, including the sparse
occurrence of orbicellid colonies (Smith et al. 2019).
Parsing out different kinds of ideal habitat for orbi-
cellids would be advantageous in future modeling
efforts and would also contribute greatly to a region-
wide benthic habitat map. High-quality benthic
habitat maps cover most of the modeling area (see
Kendall et al. 2001, Kagesten et al. 2015, Costa et al.
2017); however, a benthic habitat map encompassing
the entire model extent has not been created due to
lack of multibeam and acoustic backscatter data for
parts of the northeast shore of the northern USVI.

Another source of error and uncertainty in our
models comes from the spatially autocorrelated Orbi-
cella spp. presences, which can greatly bias model
results (Dormann et al. 2007). Spatial autocorrelation
of the data is most likely due to the heterogeneous
nature of the compiled datasets, using data from mul-
tiple different sources with varying survey designs as
outlined in Section 2.2. Future modeling efforts could
utilize the methods of Georgian et al. (2019), who cal-
culated a residual autocovariate (RAC) variable for
each taxonomic group they modeled. The RAC
method derives a term representing the spatial auto-
correlation present in the residuals of a preliminary
model. This term is then added as an explanatory
variable in the subsequent models and reduces mod-
eling error.

4.3. Conclusion

The results of this study provide predicted distribu-
tions of Orbicella spp. and mesophotic reef locations
that are located along the eastern Puerto Rico Shelf
on a broad scale under current environmental condi-
tions. Shallow and mesophotic reef ecosystems have
the potential for large areas of unexplored, unmoni-
tored, and unmanaged areas of orbicellid-dominated
reef habitat. The spatial predictive maps now need to
be ground-truthed, in conjunction with uncertainty
maps, to further characterize mesophotic orbicellid
communities, which would lead to more effective
monitoring of these declining species. The SDMs
could be refined, with the collection of environmen-
tal data at higher spatial resolutions, larger spatial
extents, the addition of new environmental predic-
tors, and through the use of more refined modeling
techniques (i.e. presence/absence or density model-
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ing). Multibeam, acoustic backscatter, benthic habi-
tat maps, and light attenuation are missing for some
of the region, and collection of these data will greatly
refine the orbicellid models. Gridded benthic tem-
perature data are needed for the entire modeled
region to assess whether satellite-derived tempera-
ture is correlated with benthic temperature. This in
turn could provide more information about tempera-
ture as a driver in orbicellid distributions. Refined
models would theoretically lead to more accurate
spatial predictive maps, which would further lead to a
better understanding of these unexplored orbicellid-
dominated reefs.
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